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Abstract

AUTOMATED MEASUREMENT OF MIDLINE SHIFT IN BRAIN CT IMAGES
AND ITS APPLICATION IN COMPUTER-AIDED MEDICAL DECISION

MAKING

By Wenan Chen, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2010

Major Director: Kayvan Najarian
Associate Professor, Department of Computer Science

The severity of traumatic brain injury (TBI) is known to be characterized by the shift of

the middle line in brain as the ventricular system often changes in size and position, de-

pending on the location of the original injury. In this thesis, the focus is given to processing

of the CT (Computer Tomography) brain images to automatically calculate midline shift

in pathological cases and use it to predict Intracranial Pressure (ICP). The midline shift

measurement can be divided into three steps. First the ideal midline of the brain, i.e., the

midline before injury, is found via a hierarchical search based on skull symmetry and tissue

features. Second, the ventricular system is segmented from the brain CT slices. Third,

the actual midline is estimated from the deformed ventricles by shape matching method.

The horizontal shift in the ventricles is then calculated based on the ideal midline and the

xii
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actual midline in TBI CT images. The proposed method presents accurate detection of the

ideal midline using anatomical features in the skull, accurate segmentation of ventricles

for actual midline estimation using the information of anatomical features with a spatial

template derived from a magnetic resonance imaging (MRI) scan, and an accurate estima-

tion of the actual midline based on the robust proposed multiple regions shape matching

algorithm. After the midline shift is successively measured, features including midline

shift, texture information of CT images, as well as other demographic information are

used to predict ICP. Machine learning algorithms are used to model the relation between

the ICP and the extracted features. By using systematic feature selection and parameter

selection of the learning model, promising results on ICP prediction are achieved. The

prediction results also indicate the reliability of the proposed midline shift estimation.

xiii
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Executive Summary and Contributions

Traumatic brain injury (TBI) is both a very severe and common injury in the United

States. The major complication of TBI is increased intracranial pressure (ICP), which

can prove fatal. Measuring ICP level is therefore very important when treating TBI

patients. Since high ICP causes deformation of brain tissue, this deformation can be

used to estimate ICP. A typical representation of brain tissue deformation is the amount

of midline shift in the brain. In this thesis, a framework for automated midline shift

measurement is proposed, including:

• A hierarchical method to accurately extract the ideal midline from CT images accord-

ing to the exact anatomical features routinely used by physicians. This is explained

in more detail in Chapter 3.

• A hierarchical method to accurately segment the ventricular system from CT images.

This is explained in more detail in Chapters 4 and 5.

• A hierarchical method to accurately estimate the actual midline based on segmen-

tation of the ventricular system with the proposed multiple regions shape matching

algorithm. Details are provided in Chapter 6.

• A machine learning based method to predict ICP based on features extracted from

both CT images and other information such as demographics. Details can be found

at the end of Chapter 7.

xiv
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Automated analysis of brain CT using image processing can result in higher accuracy,

as many features that visual inspection can easily miss would be detected using digital

image processing. The proposed system will also offer benefits of consistency and wide

availability; it can be used for hospitals in rural areas as well as for the military to help

care givers make more informative decisions. The method’s low cost and fast speed will

save physicians time by creating recommendations faster, without proving impractical to

implement.

The impact in other fields of image processing is as follows. Generally, other medical

imaging modality than CT imaging can apply the proposed methods to perform segmenta-

tion, feature points based alignment and automated measurement from labeled templates.

The developed methods can be directly applied to the following applications: segmentation

of pelvic CT images; segmentation of brain MRI, abdominal MRI and pelvic MRI.

xv
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CHAPTER 1 Introduction

It is estimated that every year, 1.4 million people in the United States sustain a trau-

matic brain injury(TBI) [36]. TBI occurs when a sudden event damages the brain, such

as a blow or jolt to the head. Over 50,000 of these patients will not survive, and many

others will be left permanently disabled [36]. 50% of those who die do so within the first

two hours after injury [65]. Speed of diagnosis is therefore vital, and so Computed Tomog-

raphy (CT) imaging, which is faster and much less costly than other medical scans, e.g.,

MRI scan, is still the gold standard for initial TBI assessment [63]. A CT scan can also

clearly reveal any severe abnormalities such as fractures or hematomas. Figure 1.1 shows

a brain MR image set and an axial CT slice image. One common cause of death and other

serious long-term complications after TBI is increased intracranial pressure (ICP) result-

ing from edema caused by the original injury. Increased ICP causes shift and deformation

of brain tissue, complicating the injury further and rapidly proving fatal if unchecked.

Cranial trepanation allows a monitoring device to be placed inside the skull, but puts the

patient at risk of infection, bleeding, and further damage to the brain tissue. If possi-

ble, a non-invasive pre-screening method to evaluate the need for cranial trepanation is

preferable. A CT scan is usually taken soon after TBI in emergency setting. It may show

shifting of the tissue - “midline shift” - or a significant change in the size of the lateral

ventricles. The shift and size of ventricles can either suggest for or against performing

1
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cranial trepanation. Physicians may use both these features to evaluate the severity of the

ICP, but these calculations have to be done manually and are time consuming. Moreover,

these estimations cannot incorporate details that are not perceivable by visual inspec-

tion, such as detailed variations in CT scan. In order to improve accuracy, speed and

consistency, automated processing of this procedure is preferred. This work proposes a

method to automate the calculation of the midline shift from a CT scan, including method

of detecting the ideal midline (where “ideal” refers to the position expected in a normal

non-pathological subject), segmenting the lateral and third ventricles, and estimating the

actual midline position.

(a) 3D MR images of brain from 3D slicer
sample visualization

(b) One axial CT slice

Figure 1.1: MR and CT Images of brain.

In a clinical setting, usually the septum pellucidum (SP), pineal gland (PG), or third

ventricle are chosen as reference points for measurement of the midline shift. Figure 1.2

shows the anatomy structure of SP and PG in MR images. In a normal brain, these

anatomy structures should be in the middle plane separating left and right hemispheric
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brains. This means that there is no shift in midline. In pathological cases, such as tumor

or hematomas, unbalanced pressure may exist and push one side of the brain to the other

side. The direct result is the location change or shift of these structures. The shift is

typically measured in two ways. One is to measure the difference in distance between the

reference point and each side of the skull [91], see Figure 1.3. The other is to measure

the distance between the reference point and a imaginary line, called the ideal midline,

which divides the brain into two nearly symmetric halves [89], see Figure 1.41. In [89],

PG and SP are used as reference points and the vertical line connecting the anterior and

posterior insertions of falx cerebri is used as the ideal midline. The midline shift is used

as one prognostic factor to predict postoperative restoration of consciousness in patients

with chronic subdural hematomas.

Figure 1.2: SP and PG location from the Whole Brain Atlas.

1Image from CT scan guidance, http://www.crash.lshtm.ac.uk/
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Figure 1.3: Midline shift measured using third ventricle and the difference in distance from
each side of skull, image from [91].

Figure 1.4: Midline shift measured using lateral ventricle and falx cerebri.
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Because SP and PG are relatively small and not obvious in CT images, in this study,

it was decided to use ventricles to define the reference point. The ventricular system is

a set of structures filled with cerebrospinal fluid (CSF) and typically visible in CT scans.

Figure 1.5 shows a 3D model of ventricular system with the presence of a MR slice of the

brain. It deforms when the pressure is changed inside the brain. Therefore it is a very

suitable candidate structure to measure the deformation of brain tissue in pathological

cases. In this study, it is proposed to automatically measure the midline shift through

detecting the deformation of the ventricular system, including lateral ventricles, the third

ventricle2 in brain CT images. Since in this study the entire ventricular system (except

the fourth ventricle) is used to measure the midline shift in brain rather than one or two

reference points, it should provide more information about the brain tissue deformation

and corresponding injury details. In this research, it is assumed that the CT scan images

are axial slices of the brain. This is usually the case when CT scan is taken.

In order to automate the entire measurement process, it is imperative to automate the

ideal midline detection for each slice, which serves as the reference line. Then ventricular

systems need to be segmented to define reference points. Based on the segmented ventric-

ular system, a series of reference points or lines representing the new locations of the actual

midline can be estimated. Figure 1.6 shows the flow chart of the whole process. After

the midline shift is measured, this feature is used to predict related outcome. Figure 1.7

illustrates the estimation of midline shift for different CT slices based on the proposed

framework. One possible application is the ICP prediction. By combining features such as

midline shift, the brain tissue texture from CT images and other demographic information,

2The fourth ventricle is not considered in this work because it is rarely used to measure the midline
shift, but it can be easily included.
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Figure 1.5: 3D ventricle model from 3D slicer sample visualization.

Figure 1.6: The framework of midline shift calculation.
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(a) (b)

Figure 1.7: Midline shift calculation based on different CT slices. Figure7(a) shows the
calculation based on bilateral ventricles. Figure7(b) shows the calculation based on the
third ventricle.

a classifier can be trained to predict the ICP outcome.

In sum, the proposed research encompasses the following components:

• An automated method to accurately extract ideal midline from CT images according

to the anatomy feature used by physicians.

• An automated method to accurately segment ventricular system from CT images

• An automated method to accurately estimate the actual midline based on segmen-

tation of ventricular system with the proposed multiple regions shape matching

• An automated machine learning based method to predict ICP based on features

extracted both from images and other sources.
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The rest of this thesis is organized as follows. Chapter 2 gives a review of biomedical

images processing methods. Proposed methods and experiment results are presented in

Chapters 3, 4, 5, 6 and 7. Chapter 3 explains the method of ideal midline detection. Chap-

ters 4 and 5 explain the segmentation of ventricular system in CT images. In Chapter 6,

a shape matching based actual midline estimation is presented. Chapter 7 applies the

extracted features from CT images as well as features from other sources to predict In-

tracranial Pressure (ICP) level of patients having traumatic brain injury (TBI). Chapter 8

concludes the thesis and lists potential future work.
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CHAPTER 2 Previous Studies on Medical Images

Processing

2.1 Midline Estimation

In general, the midline refers to the inter-hemispheric sagittal plane which separates the

left and right hemispheres [90]. If the brain is healthy (without any traumatic injury),

the midline should not change its location inside brain. However, in pathological cases,

e.g., in presence of tumors or hematomas, the midline may deform and shift away from

its original location. In this work the ideal midline refers to the original midline before

any pathological change. The actual midline refers to the actual current position of the

midline in brain. Sometimes the ideal midline, or ideal mid-sagittal plane, is defined

differently. In [78] [103], ideal mid-sagittal midline is defined as the plane that maximizes

the symmetry of the brain. Others define the midline based on the physical structure of

the brain: the plane that best represents inter-hemispheric fissure. This is closer to the

actual midline definition as used in this study. However, all these definitions are very

close in practice. The specific definitions used in this study is indeed what is used in a

radiologist’s measurement of midline shift. These definitions are the result of discussion

with radiologists. As such other ideal midline definitions will be referred to as virtual

midline. As far as we know, this work is the first research trying to automate the ideal

midline detection and the actual midline estimation in CT images based on the physical

definition given above. Other research work on medical image processing try to define a

symmetric based measurement as the midline, which can be used as a starting point to

9
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further exact ideal midline, for example, [103] [78]. There are also research on medical

image segmentation [41] [47, 66, 96] [20] [56] [46], and shape matching applied on medical

images [94] [64]. However, this work is the first time trying to automate the midline shift

measurement.

2.1.1 The Ideal Midline/Mid-sagittal Plane Estimation

As explained above, methods for automated virtual midline detection can be grouped into

two major approaches: inter-hemispheric fissure based [59] [9] and symmetry criterion

based methods [78]. These midlines can be used as an approximate location of the ideal

midline as defined in this study. In [78] and [103], the mid-sagittal plane is defined based

on a plane that divides the 3D brain structure using maximal symmetry. These methods

can effectively deal with some asymmetry by using either a robust registration method or

an estimation method, as shown in experiments. The advantage of this symmetry based

method is that it is robust to the local asymmetry due to pathological changes. The

disadvantage is that this method often lacks anatomical accuracy, even though usually it

is very close to inter-hemispheric fissure. The fissure based method [58] [9] approximates

the virtual midline based on the points representing the fissure. The disadvantages of this

method include its needs to accurate detection of the fissure and sensitivity to outliers.

Another drawback is that the curvature of the fissure may not be well represented based

on the plane. The method proposed here is essentially a combination of these two ap-

proaches that results accurate detection of the ideal midline. In the proposed approach

bone symmetry is used to form an approximate midline, then anatomical features in CT

images are used to direct and improve the approximate midline to capture the ideal mid-

line. Because the final aim is to measure the midline shift, using symmetric measures
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alone cannot guarantee that the result is consistent with the actual location of an ideal

fissure, (i.e. the fissure before TBI), which may not precisely define the plane separating

the two sides symmetrically.

2.1.2 The Actual Midline Estimation

The fissure based midline detection can also be viewed as an actual midline estimation

method. Usually these methods uses deformable model, e.g., snakes that capture the

fissure [58]. However, this type of detection method is used in MR images where the fissure

is more obvious than CT images. The actual midline in CT images is best represented by

the falx cerebri and ventricle locations. For example, in the center axial CT slices where

ventricles reside, falx cerebri is only visible at the edges of the anterior and posterior

regions. In [54], a genetic algorithm is applied to model the deformed midline using Bézier

curve. This method, however, assumes symmetric textures in the brain tissue, which

is clearly not always the case especially when hematomas or other pathological changes

occur. Also, the method may not work accurately when the midline shift is larger than 5

mm, which reflects the asymmetry present in most pathological cases.

2.2 Medical Image Segmentation Methods

Image segmentation involves assigning a label to each pixel to group them together, based

on some common features depending on the objective of the application. Typically the

each segmented region may not be directly related to a single meaningful object, e.g., they

may only represent one part of a complex object. However segmentation is typically the

first step in image processing.

Medical images, e.g., CT scans or MRI scans, have several special characteristics dif-
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ferent from general images. These characteristics include:

• Meaningful intensity values. The intensity value corresponds to X-ray attenuation

or magnetic resonance frequency of the tissue represented by the pixel (voxel). This

is different from natural scene images which have multiple intensity values for the

same material under different illumination.

• Solid representations of fixed structure inside the brain. Generally, the brain is a

closed space and all objects inside have their approximate positions. The size and

position information for each object are roughly known. This information is often

approximately represented by brain atlases formed from CT and MRI collections .

Although there are differences between individuals, the general structure of these

objects is more or less the same.

• Inclusion of a large number of objects. This makes brain segmentation a challenging

task, in particular if the aim is to segment the regions representing all different

tissue. This is further complicated by the low resolution of the images. Usually

segmentation methods for CT scans merge a number of similar parts into larger

classes of regions to reduce the overall number of segmented objects.

• Inclusion of blurred boundaries. This is due to partial volume effect which averages

the intensity value of neighboring tissues. No segmentation method should be ex-

pected to segment regions with accuracies beyond the limits of the image resolution

provided to the algorithm.

• Variations due to pathological cases. This increases the difficulty of segmentation
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because there can be severe changes inside the brain. A successful segmentation

algorithm must be robust enough to deal with these variations.

A medical image segmentation method should utilize/consider these features to gain suit-

able performance. In medical image segmentation literature, several automated segmen-

tation techniques have been extensively studied for medical images, in particular method

for segmentation of MRI scans [76]. In this section, typical medical image segmentation

methods are grouped into larger categories and are reviewed. The categories are based on

the main feature of the methods and may not be mutually exclusive. A practical image

segmentation method belongs to more than one category because it uses more than one

feature.

2.2.1 Thresholding

Thresholding methods typically use an intensity threshold to separate foreground ob-

jects from background objects. There are global thresholding and local thresholding ap-

proaches [27]. Global thresholding method finds a global threshold for each pixel. A

popular approach to automatically pick up the threshold is Otsu method [69], which can

be viewed as a two-category clustering method using only intensity feature. Local thresh-

olding considers the change of intensities in different area of the image and estimate local

thresholds for different areas of an image [27]. The advantages of thresholding method

include simplicity, intuitiveness and speed. The limitation of thresholding method is that

it only uses intensity information for segmentation. This makes the method fail in highly

noisy images. In medical image segmentation, thresholding can be used to segment high

contrast regions, e.g., to segment bones form brain tissue in CT images. It also is used for



www.manaraa.com

14

an initial segmentation.

2.2.2 Region Growing

Region growing uses some initial point as seeds and grow these seeds according to prede-

fined criteria. Seeds can be chosen manually or automatically according to images features.

The criteria used for region growing depend on specific applications. Usually edge infor-

mation, intensity or gradient information is used in the criteria. Several rules can be used

to define the criteria, therefore region growing is in fact a general framework to incorporate

other information in the algorithm. Region split-and-merge [27] is an algorithm related

to region growing which does not require seed points. The advantage of region growing

method is that it is natural and intuitive. However, the success of region growing depends

heavily on the chosen criteria. Usually the method of choosing criteria is heuristic. Re-

gion growing is commonly used in 3D image scan because it allows segmentation across

3D space [85] [83].

2.2.3 Clustering and Classifiers

Since the objective of segmentation is to label each pixel, it is intrinsically a classification

or clustering problem. More specifically, the sample information is not only expressed

by its intensity value, but also by the neighborhood information. There are three com-

mon used clustering methods: K-means [24], Fussy c-means (FCM) [8] and expectation-

maximization (EM) [98]. K-means first chooses the number of clusters and initial centroid

of each cluster from data points. Then it iteratively clusters data points to its closest

centroid and calculate the new centroids based on formed cluster. The algorithm con-

tinues until there is no change in the membership of clusters. FCM allows one point to
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have membership to more than one cluster and uses possibility value between 0 and 1

to describe these memberships. After the algorithm converges, it picks the cluster with

the largest membership value as the pixel label. In [31], FCM clustering method is com-

bined with bias field modeling for MRI segmentation. FCM is also modified in [75] to

compensate for inhomogeneities in MRI. EM method is widely used as a method to esti-

mate both missing data and model parameters [19]. In image segmentation, it is usually

coupled with Gaussian Mixture Model (GMM). GMM is a commonly used model in clas-

sification [48] [10] [29]. GMM models the distribution of samples with a weighted multiple

Gaussian function:

f(x; π, θ) =
∑

i=1

Kπifi(x; θi) (1)

After the estimation of GMM parameter, Bayes decision rule can be applied to classify

each pixel. In order to decide the parameters in Equation 1, a popular approach is

to use some labeled sample data, i.e., labeled pixels to estimated Gaussian distribution

parameters. Another method is to first use clustering method, e.g., K-means, to obtain

an initial segmentation. Parameters then are estimated based on the initial segmentation

result. If the aim is to maximize the likelihood of the model with the data, EM method

is typically used to iteratively update model parameters until a local maximal achieved.

In [98], GMM is used to model the intensity in MRI. This approach also incorporates

another variable for each pixel to model the inhomogeneity. In [29], each brain regions

is modeled using GMM and a specific initialization method designed for GMM. Pixel

location is also used as a feature in the model. Other classifiers, such as artificial neural

networks, are also explored for segmentation of multi-spectral MRI scans [80]. The main

advantage of K-means and FCM is their speed and relatively reasonable segmentation
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accuracy. However, in many applications using K-means, FCM or EM only focus on

pixel intensity. This results in wrong segmentation in particular in presence of noise.

Classifier based segmentation methods usually include two main steps: model design and

model parameter estimation. Often EM based parameter estimation is very sensitive to

initialization.

2.2.4 Markov Random Field Models

Markov Random Field (MRF) assumes that the image label is a realization of Markov

Random Field. For each pixel label xi on location i, denote Ni the neighborhood of the

pixel i, then MRF defines the following probabilistic model:

p(xi|xj , all j 6= i) = p(xi|xj , j ∈ Ni) (2)

The main idea of MRF model is that the label in one location depends on its neighboring

pixels. This has two consequences. First the labels of local neighborhood cannot change

arbitrarily as it must satisfy some probability distribution described in Equation 2. Second,

the constraint is not global, only local influence is imposed by one label. This constraint

enables MRF model to easily adapt to image data while maintaining smooth segmentation.

There are several methods to maximize the probability of label configuration given the

image data under the MRF model. One is simulated annealing (SA) [26], which guarantees

maximal convergence given infinite training time. SA is very computationally extensive.

Another method is Iterated Conditional Modes (ICM) [6], which is equivalent to instanta-

neous freezing in simulated annealing. Other methods are also proposed including mean

field (MF) methods [25]. Typically MRF assumes Gaussian distribution when modeling

the intensity value with each label. Besag [6] uses ICM method for image restoration from
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noisy data. The experiment in [6] can be thought of as image segmentation because the

final results are regions with several different levels. Papas [71] applies the MRF model but

allows different mean estimation in local areas of the same class. This local adaptive con-

sideration performs much better than the simple K-means algorithm using global criteria

for all pixels. In [53], multi-spectral MRI segmentation is achieved using GMM to model

image intensity and MRF model a priori. Held [33] uses two MRF models to conduct MR

image segmentation; one for the inhomogeneous gain field and one for the MRF prior.

In [79], a very similar method to [71] is applied, except that it allows different variances

for different locations in Gaussian distribution in the same class. Recent studies involve

Hidden MRF [105] and compound MRF [99]. The main advantage of the MRF model is

that it models the spatial relation which is very common in natural images. Usually this

achieves smoothers segmentation than other intensity based segmentation methods. How-

ever, the MRF method is often computationally intensive, especially while SA algorithm

is used. Another disadvantage of the MRF model is its needs for careful initialization.

2.2.5 Deformable Models

Deformable models use a parameterized curve, surface, or even solid model to fit im-

age data. The initial model deforms under the influence of internal and external forces.

Internal forces are computed from within the model to keep it smooth throughout the de-

formation. External forces are usually derived from the image to drive the curve, surface

or solid model to fit the data. A popular family of deformable models is “snake” [40]. This

model is used in many medical applications [5] [55] [18]. Another deformable model, based

on statistical templates, is active shape model [17]. It applies manually labeled points to

learn the statistical features of the shape and guides the model to deform the contour in
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the direction that may leads to a better fit. There are also other deformable models [61].

The advantages of deformable models include their ability to directly generate closed para-

metric curves, surfaces, solid models from image data. The model usually has smoothness

constraint, and as such the result is robust even in noisy cases. A disadvantage of most

deformable model is their need for manual interaction or initialization with points close

to the border of the structure to be segmented. Besides, the model parameters need to

be chosen appropriately. Research aiming to reduce the sensitivity of initialization and to

enhance the ability of modeling complex shapes shows promising results in [60] [102].

2.2.6 Knowledge Driven Methods

One difference between computer based segmentation and visual segmentation done by

human is that a human uses substantial amount of domain knowledge throughout the

process. Incorporating human-level prior knowledge into computer algorithms greatly

enhances the ability of computers in solving various problems in which human outperforms

the machine, such as vision and visual recognition. One popular approach incorporating

prior knowledge in medical image segmentation is the use of a medical atlas [92, 77]. The

common use of an atlas is to register the atlas images with the target images [57]. Once

the registration is done, the target image is segmented according to the know structure

of the atlas. Since registration emphasizes global alignment between the two images,

detailed differences between the atlas and the target image may not be well addressed. As

discussed above, region growing is also a method of incorporating prior knowledge. First

region growing embodies the continuity of the objects in images by growing connected

neighborhood. In 3D MRI data, adjacent slices may be checked for growing criteria. Xia et

al. [100] applies region growing to extract ventricles in the brain from MRI scans, designing
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very specific rules to grow each part into the entire ventricular system. Li [52] designs a

Generic Blackboard (GBB) based system to organize tissue location information. GBB

is a basis for the construction of problem-solving systems including reasoning and data

representation. Together with low level image features such as points, lines, and regions,

this system is intuitive and shows relatively suitable delineation results for different tissue

regions. In [85], cognition network technology is used to control ventricle detection. This

method is convenient to set constraints in a high level form which facilitates the use of

expert knowledge. These methods of incorporating expert knowledge are very general

and can also be applied to segment or detect other brain objects. Incorporating human

knowledge into algorithms mimics human’s reasoning process and can implement heuristics

formed from the human knowledge.

2.2.7 Conclusion

For particular applications, the above segmentation methods are often combined together

to achieve superior performances. For instance, MRF methods are commonly used as a

prior to enforce spatial regularization. In [39], expectation maximization based segmen-

tation is combined with the use of active contour models. The more information used in

algorithms to characterize each region, the more accurate the segmentation results are.

The specific choice of segmentation methods depends on the application field, the image

characteristic, and the information to be incorporated throughout the process of segmen-

tation.
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CHAPTER 3 Ideal Midline Detection

3.1 Introduction

Increased ICP can cause the actual midline of the brain to move from its original position.

The detection of the ideal midline - i.e., the midline that should be present in a healthy

brain with normal ICP - serves two purposes. First the ideal midline can be used as a

reference line to measure the shift in the brain tissue. Second, it can also be used as

a calibration line, as different CT scans have different head rotation depending on the

patient’s position. Once the CT images are calibrated based on the ideal midline, the

entire anatomical structure of the brain can be roughly identified. This provides the

opportunity of using a template matching method for ventricle recognition.

3.2 Methods

3.2.1 Overview

The method described in this thesis uses the bone protrusion on the upper part of the

skull and the falx cerebri fold in the lower part to accurately locate the position of the

ideal midline, since these anatomical features change very little with midline shift in the

brain. Although the ideal midline can be roughly approximated using the symmetry of

the brain, the anatomical features must be considered for more accurate detection. The

ideal midline detection method has three steps:

1. Detect the approximate midline using symmetry.

20
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2. Detect the falx-cerebri and anterior bone protrusion.

3. Use these features to refine the midline position.

Each slice is processed independently at first, then an adjustment is applied across the

scan set to compensate for inaccurate midline detection in individual slices.

3.2.2 Detection of Approximate Position of the Ideal Midline Using Symmetry

To find the approximate ideal midline, the algorithm uses an exhaustive rotation angle

search around the mass center of the skull to find the line that maximizes the symmetry of

the resulting halves. Figure 3.1 outlines this algorithm. First the bone image is extracted

using a thresholding method. The image is then rotated around the center of mass of

bone parts in the image. Finally, the symmetry of resulting image is measured. Symmetry

is defined here as the sum of the symmetry of each row in the resulted image. The row

symmetry is defined as the difference in distance between each side of the skull edge and

the current approximate midline. Figure 3.2 illustrates the symmetry measurement. For

each rotation direction θj , the symmetry cost Sj is defined as follows:

Sj =
n∑

i=1

|li − ri|, (3)

where n is the number of rows for the skull in the image and measures li and ri are

depicted in Figure 3.2. The proposed method resembles the method used in [54], except

that in this assessment both the interior edge of skull and the exterior edge of skull is

checked. Usually the interior edge is unaffected by the thickness of the skull wall, whereas

using the exterior edge may prove problematic if the skull wall is not of uniform thickness.

Figure 3.3 demonstrates such a case; the first image is the result of using thickness of skull
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bones for symmetry measurement, and the second uses the difference in distance from the

searched line to each side. However, in some cases, especially in the lower part of brain,

the presence of shape irregularities inside the skull makes the exterior edge a better choice

for evaluating symmetry. Consequently, both the interior and exterior edges are tested,

and the edge with better symmetric measurement (the lower value of symmetric cost) is

used.

Figure 3.1: Exhaustive symmetric position search.
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Figure 3.2: Symmetry cost calculation. The l1 and r1 actually begins at the top line of
the skull (the ellipse), ln and rn are actually on the last row of the skull.

Once an approximate midline is estimated using symmetry, brain anatomical features,

i.e. the position of the falx cerebri and protrusion of skull bone are used to refine detection.
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(a) (b)

Figure 3.3: Comparison of different symmetric measurements: (a) using thickness, (b)
using center-to-edge distance.

3.2.3 Detection of Falx Cerebri at the Lower Part of the Brain

The falx cerebri is a strong fold of dura mater that follows the fissure between the left

and right cerebral hemispheres. In order to detect this anatomical feature quickly and

accurately, two searching rectangles are defined based on the ideal midline and the two

intersection points with the skull bones. The size of the rectangle is chosen to include

the anatomical features to be detected. All the feature processing steps are applied only

in these cropped regions of interest(ROI). Figure 3.4 shows the two rectangle ROIs and

refined ideal midline based on anatomical features. The method used to detect these

features is explained in this and the following sections. First edge detection methods are

used to extract the edge map. Hough transform is then applied to detect lines in the edge

map. However, this only works if the gray line representing the falx cerebri is very obvious

compared to the neighboring region. In some CT images, the area around the gray line

has a similar gray scale pattern resulting in unwanted edges in the edge map. To address

this issue and erase these edges, first a zero crossing edge detector is used to generate

the edge map. This maintains richer edges during Sobel detection and allows removal
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Figure 3.4: Example midline detection result.

of unwanted edges. The edge map is then refined step by step using known features of

the falx cerebri. Finally, Hough transform is applied to detect lines representing the falx

cerebri. Figure 3.5 shows the schematic diagram. Zero crossing keeps nearly all the edges

Figure 3.5: Diagram of falx cerebri detection.

regardless of the gray scale values or the sharpness of an edge. Since the aim is to detect

light gray lines, not the darker lines, all the gray scale values below the median value

of the area are changed to the median. After this step, only the much brighter pixels

will retain their original gray levels in the image. This simplifies the edge map generated
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later. It was also discovered that the gray line representing the falx cerebri has sharper

edges than most other boundaries, and this can be used as a guide to erase trivial edges.

This information is incorporated by calculating the Sobel edge map and then applying a

threshold to form a revised edge map. The threshold is set as a percentage of the maximal

value in the Sobel edge map. Finally, only the edge points that appear in both maps are

considered.

Another issue affecting the Hough transform is the presence of small unconnected point

clouds close to edges. Hough transform may try to connect them and form a new line. This

effect can be erased by removing all edge clouds with points smaller than some threshold

value. In this experiment, 3 pixels are used as the threshold.

A final edge point erase is done by only selecting the vertical strips with high edge points

along the entire vertical direction. The reason is that after obtaining the approximate

position of the midline and rotating the CT images based on this, the gray lines in CT

images are mostly vertical. The vertical strip containing the gray lines must therefore have

more edge points than other places.

After these filtering steps are applied to the edge map, Hough transform is used to

detect lines inside the map. Figure 3.6 displays the entire process. The results of the

Hough transform are usually a set of lines. Two constraints must be established to extract

the desirable lines from this set. First, the angle of the line must be in the range where the

lines are concentrated. This range is obtained by calculating the statistics of the angles

of the detected line. Second, the line must lie inside the range where the cluster of lines

concentrates. The final ideal midline at this stage is chosen as the longest line satisfying

the above constraints.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 3.6: Detection of lower falx cerebri. 6(a) The lower part of CT image. 6(b) The
lower part without skull. 6(c) Valley filling using median value. 6(d) Edge map after edge
detection of zero crossing. 6(e) Edge map masked using intensity threshold on gray scale
image. 6(f)Edge masked using gradient threshold on gray scale image. 6(g)Edge map after
deleting small connected object. 6(h) Edge map after deleting sparse points. 6(i) Hough
transform result on edge map.

3.2.4 Protrusion Detection

A bone protrusion is located in the anterior section of the skull; the falx cerebri extends

from this point. This anatomical feature can be used as a starting point for the midline.

It can be seen in Figure 3.7 that the protrusion curves down to a local minimum point at

the anterior edge of the falx cerebri.

If one views the lower edge of the skull bones as a curve on the image plane, then

the curve can be modeled as a 1-dimensional function. Therefore, the protrusion point

is the place where the function reaches its minimum. Detection of the protrusion point

becomes a matter of finding the minimum of a sampled 1-dimensional function. There

are two problems in real images which make this modeling more complex. One is that

the protrusion location may not be the global minimum, i.e., the left and right edge may
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even be lower than the protrusion place. Therefore the height of bone edge cannot be

used directly to locate a local minimum. Another problem is that there are small noisy

local minima in other places. In order to address these problems, the derivative is used to

find the local minima and a larger neighborhood is searched to avoid small noisy minima.

Figure 3.8 explains protrusion detection graphically. Since the derivative is calculated in

a discrete curve, obtaining a derivative of exactly zero may not be possible. A suitable

alternative is to find the transition point between a negative and positive derivative. Due

to the uneven surface of the skull, there may be more than one local minimum inside

the region of interest, so the algorithm uses the signed addition of derivatives within a

specified neighborhood of the local minimal point. This gives significant preference to

large minima over the smaller local minima that occur naturally on the skull surface. If

there are multiple large minima in the region of interest, the one closest to the approximate

symmetric midline is chosen.

Figure 3.7: The anterior bone protrusion.

Figure 3.8: Diagram of protrusion detection.

Figure 3.9 shows the curve of a typical bone shape. The aim is to find the point a in

the presence of multiple local minima. The difference between point a, the true minimum,
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Figure 3.9: Selecting a larger protrusion. Function f(x) is the extracted curve of the
interior bone edge.

and b, small protrusion due to irregularity of bones, is the size of the slope around them.

This can be captured by increasing the size of neighborhood studied when calculating the

derivative; typically the algorithm uses a region of 10 - 15 pixels. The point a is found by

searching the maximum of the sum of the left and right derivatives as follows:

xa = arg max
x

[−(f(x)− f(x− w)) + (f(x + w)− f(x))] (4)

= arg max
x

[f(x + w) + f(x− w)− 2 ∗ f(x)]. (5)

where w is the neighborhood width. Equation 5 finds the maximal second derivative. This

calculation avoids small amounts of noise around the curve.

3.2.5 Post-processing

The midline detection performs very well where both the anterior bone protrusion and

the falx cerebri line are present. In slices where one of these features is not present,

the symmetric exhaustive rotation search is repeated with a smaller range and smaller

degree steps around whichever feature is present. If neither feature is present, the initial
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approximate midline may be used; however, since the skull shape is sometimes complex,

the symmetry of the skull will not reflect the true midline. In such cases, slice comparison

solves the problem. From the experiment, it is observed that inaccurate midline detection

seldom occurs in consecutive image slices, and it is reasonable to assume that the midline

should not change much across several consecutive slices of the scan. Using this knowledge,

a slice with an “abnormal” midline can be corrected based on the midlines of the slices

immediately preceding and following. The adjustment initially identifies the “first class”

slices - those with both features detected - then the “second class” slices - those with only

one or none feature detected. Then it calculates the angle difference between each second

class slice and its closest first class neighbor. If the difference exceeds a certain threshold,

the midline is deemed unacceptable, and is replaced with the midline of the closest first

class neighbor. The threshold is chosen after some statistical analysis of data observed.

This post-processing has two benefits: to guide later segmentation, and to lay a basis

for the calculation of structural information after segmentation is complete. Figure 3.10

shows the result of the adjustment based on neighbor slices.

(a) (b)

Figure 3.10: Consistency check: (a) a slice with incorrect midline detection, (b) a corrected
slice, where the blue line shows the new midline position.
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3.3 Results

3.3.1 Data

The testing CT dataset was provided by the Carolinas Healthcare System (CHS). All

subjects were diagnosed with mild to severe TBI when first admitted to hospital. The

dataset contains 40 patients. From this set, 391 axial CT scan slices are selected that

show ventricles or region that should have contained ventricles. To our knowledge, and

based on the literature of the brain CT image processing [46] [78] [103], our database is

relatively large, and as a result, the reliability of the testing results for the proposed CT

segmentation method should be at least as high as that of almost all comparable works in

this field.

3.3.2 Evaluation Criterion

In order to measure the difference between the ideal midline from the proposed algorithm

and that of the manual estimation, the following evaluation method is used. Figure 3.11

shows the spatial relations between the ideal midline detected by the algorithm (vertical

line) and the ideal midline estimated manually (inclined line). For the manual midline

detection process, two points in the upper and in the lower part of the CT slices are

recorded and used to identify the manual midline. Then the line segment of the ideal

midline detected by the algorithm in the range of the manual ideal midline segment are

processed as follows: d1 and d2 are the distance between the top two points and lower two

points of the two line segments, are used to form the average distance d with respect to

the area, i.e., d = S/h, h = h1 + h2. S is the area enclosed by the two line segments and
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Figure 3.11: Two cases of the difference between the ideal midline detected algorithmically
and manually.

the top and bottom line. Finally the difference can be calculated as:

d =
d1 + d2

2
(6)

for case a in Figure 3.11 and as

d =
d2

1 + d2
2

2(d1 + d2)
(7)

for case b in Figure 3.11.

3.3.3 Results of Ideal Midline Detection

The midline detection algorithm was tested on 391 CT slices. Out of these, 268 slices

have the ideal midline in the first class, and 123 have the second class ideal midlines.

The ideal midlines were estimated manually by the collaborating physician. Table 3.1

shows the mean and standard deviation of the difference between the algorithm and the

manual estimation. As it can be seen in Table 3.1, the proposed algorithm performs

very accurately, in particular for the first class midlines, given the fact that the standard
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deviation of the manual estimation may be around 1 to 2 pixels. The observation that the

algorithm performs better for the first class is understandable because more information

is used and processed for the first class of midline. In the detection of the second class,

only symmetry and cross slice adjustment are used. In real cases of the second type, the

midline usually does not split the skull bone in a symmetrical way. Sometimes there is

no gray line in the lower part or obvious separation in the upper part, which can also

complicate and compromise the manual labeling and detection of the ideal midline.

Several reasons contribute to a large estimation difference between the algorithm and

the expert. Here is a list of them:

• The gray line is too blurry, like a cloud, or no gray line, or no protrusion.

• The protrusion does not correspond to the separating position.

• The gray line in the upper part or a protrusion point in the lower part is used as the

reference point.

The first case shows the inherent uncertainty of the problem itself, no algorithm working

on the single slice can overcome this. However, by considering neighboring superior and

inferior slices may reduce the uncertainty thus result in a good estimation. The second

and third cases show the limitations of the proposed algorithm. Further incorporation of

anatomical features of used reference points may overcome these limitations.
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Table 3.1: The difference between algorithm output and manual estimation in pixel unit

First class Second class

2.1± 1.9 4.0± 3.2
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CHAPTER 4 Ventricular System Segmentation in CT

Images

4.1 Introduction

Research on automated brain CT segmentation is still comparatively scarce. MRI offers

improved soft tissue contrast over CT, and is therefore better able to characterize these

tissues to aid in segmentation [41]. However, while MRI is suitable for soft tissue exam-

ination or in case which can afford long time processing, in real clinical settings, e.g., in

traumatic injury case, CT images typically used due to time urgency, better visibility of

bones and blood as well as low cost. This emphasizes the need to develop methods for

CT image processing. Though CT segmentation has been studied previously, much of the

work has focused on cardiac and thoracic anatomy [47, 66, 96], areas for which where CT is

a standard method of diagnosis. In [20], a 2D atlas is used for segmentation of abdominal

CT volume. Some attempts at segmenting brain CT images have been made. Li et al.[51]

devise a method to model spatial relationships between objects in the brain, using General

Blackboard (GBB) system to incorporate reasoning based on low lever segmentation and

prior knowledge. However, the algorithm was not tested on severe pathological cases. In

[56] k-means clustering and neural network are applied to segment areas of hemorrhage

in brain CT slices, but the approach is only tested on a single CT slices. In [46] several

segmentation methods are evaluated for CT brain segmentation, including intensity based

GMM classification, Fuzzy c-Means and Expectation Maximization. The result is rela-

tively good but there is still improvement space for CT segmentation. In this method,

34
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the process is separated into two parts. First an initial low level segmentation method is

applied to group pixels into different parts. Then a high level template matching is used

to identify ventricles from segmented result. Specifically, ICM and MASP algorithms are

adopted for low level CT brain segmentation. Later template matching is employed to

further identify ventricle areas.

4.2 Methods

4.2.1 Low-level Segmentation

In CT scans, the ventricle system typically has darker color than other tissue. A simple

method to segment ventricle would be using binary thresholding, with the threshold value

chosen via Otsu’s method [69]. However, testing this method gave poor results, with se-

vere noise and object fragmentation. The challenge is that in CT scans there are many

“holes” or noise (which has different gray scale values) in tissue areas. Another challenge

is that the boundary between different tissue parts is very blurry. Binary segmentation is

also unrealistic since there are multiple tissue types within the brain. Furthermore, simple

thresholding classifies each pixel independently of its neighbors. This cannot work well

when different tissues have wide range of overlap of gray scales. To address the problem of

noise and blurry boundary, segmentation methods adopted here follow conditional proba-

bility models where the most probable label of a pixel depends upon the attributes of both

the pixel itself and its neighbors. In this study, two such spatial segmentation methods

are evaluated: Iterated Conditional Models (ICM) [6] and Maximum A Posteriori Spatial

Probability (MASP) [50].

For both methods, some starting assumptions are made. It is assumed that each pixel

x in an image X has an attribute lx representing the label to which it is assigned, and
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an attribute gx representing its gray-level intensity. This gives rise to two subimages L

and G, where L = lx, x ∈ X and G = gx, x ∈ X. G is the observable image of gray-level

values, and L is the ‘hidden’ image of assigned labels. The labels in L each take some

value k ∈ K, where K is the number of distinct objects (or tissue types) in the image.

Except for those on the image border, each pixel x has M neighboring pixels, and these

form a neighborhood Nx = (x(1), x(2), ..., x(m)). This is split into a neighborhood label

configuration Nl = (l(1)
x , l

(2)
x , ..., l

(m)
x ), and a neighborhood gray-level configuration Ng =

(g(1)
x , g

(2)
x , ..., g

(m)
x ). The set of all possible neighborhood configurations is denoted by N.

Usually 4-neighborhood or 8-neighborhood are used. Figure 4.1 shows the 8-neighborhood

gray-scale block and label block in a image. Generally, in our application, four types of

brain matter - bone or blood, ventricular tissue, and light and dark grey matter - are

assumed to represent different ranges of gray scale in the brain.

Figure 4.1: Gray scale grid and label grid of images.

In using the spatial information in each pixel’s neighborhood, two assumptions are

made. First, that the gray scale value gx of pixel x depends only on the label of x and not

its gray-scale neighborhood, i.e., gx and Ng are independent given the label lx. Second,

the dependence between the labels are local. ICM and MASP have different assumptions

on local dependence.
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Iterated Conditional Modes (ICM)

ICM [7] follows the two assumptions made about spatial segmentation: a pixel’s gray scale

value gx is dependent only on its label lx and not the values of other pixels given the label

l(x); the ideal label map L∗ is a realization of a locally dependent Markov Random Field

with distribution p(x). The statistics of each label class are computed using the Gaussian

model, so each class has parameter set the mean µk and the variance σk which can be

estimated from the image. Therefore the conditional density of the image Gx given Lx is

given by the following due to independence assumption.

l(Gx|Lx) =
n∏

i=1

f(gxi |lxi) (8)

ICM iteratively finds a local maximum of P (Lx|Gx), updating each pixel’s label in

every cycle, which can be expressed in the following Equation:

l̂x = arg max
k

P (x = k|g, Nc) (9)

Suppose that L̂ is a provisional estimate of the true label map L∗, and at each step the

estimated l̂x is updated at each pixel x given all available information. For each pixel

x, denote x = k meaning that pixel x has label k, k = 1 · · ·K. Denote g the gray-scale

value of x, N as one of the neighborhood labels configuration of x and Nc the current

estimation of neighborhood configuration, which is from L̂. G is the gray-scale values of

x’s neighborhood. By using the two assumptions, Equation 9 can be written as

P (x = k|g,Nc) ∝ f(g|x = k)P (x = k|Nc), (10)

where f(g|x = k) is the probability of a pixel x having a particular gray-scale value g given
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its label k, and p(x = k|Nc) is the probability of being label k given the labels of its current

estimated surrounding neighbors Nc. A single cycle applies this to each pixel in turn, and

the cycle is repeated until the estimated label map L̂ does not change significantly between

iterations.

Note that the ICM method requires initial segmentation of the CT image. Here k-

means is used, due to its speed and reasonably accurate performance. The initial seeds

are chosen manually, after using training examples to calculate a standard gray scale range

for each type of brain tissue. These ranges are consistent across the majority of images,

and k-means initialization is therefore satisfactory.

Maximum A Posteriori Spatial Probability (MASP) Segmentation

As in ICM, there are also two assumptions in MASP [50] segmentation algorithm. First is

the same independence assumption about the gray-scale value given the label of the pixel.

Second is about local dependence of labels. The neighborhood configuration depends on

which class or label the center pixel belongs to. Use the same notation as in ICM section,

MASP tries to label each pixel using the following formula:

l̂x = arg max
k

P (x = k|g, G), (11)

where

P (x = k|g, G) =
P (g,G|x = k)P (x = k)

P (g,G)
. (12)

Since P (g, G) is independent of the label k, we have

P (x = k|g, G) ∝ P (g,G|x = k)P (x = k). (13)
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Calculating P (g,G|x = k) requires more effort. By using the law of total probability,

P (g,G|x = k) can be used to calculate as follows:

P (g, N |x = k) =
∑

Nl∈N

P (Nl|x = k)P (g, G|x = k, Nl), (14)

which, using assumption 1, can be written as

P (g,N |x = k)

=
∑

Nl∈N

P (Nl|x = k)f(g|x = k)
M∏

m=1

f(gm|xm ∈ Nl). (15)

It also assumes that f(g|x = k) follows a normal distribution with parameters µk, the

mean grey-level for class k, and σk, the standard deviation of the gray-scale values for

class or label k.

Modified MASP

In this section our modified version of MASP, used in this study, is described. The compu-

tational demands of the conventional MASP process can be significant. Since the algorithm

averages probabilities over all possible neighborhoods in Equation 15, its dimension in-

creases rapidly with more complex images. A simple binary segmentation using a 4 pixel

neighborhood has a dimension of only 24 = 16. However, CT image segmentation is more

complicated for two reasons. Firstly, at least 4 labels are required: bone, ventricle tis-

sue, and light and dark grey matter. Secondly, as mentioned before, if we use an 8-pixel

neighborhood, the resulting dimension is therefore 48 = 65536 which is a very large num-

ber for probability estimation. Moreover, the MASP algorithm is applied iteratively to

each individual CT slice, taking around 8 iterations on average, and each slice contains

512 × 512 = 262144 pixels, with up to 8 slices per patient scan. All these result in very
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long computation time for MASP. Since speed is vital when medical decisions must be

made quickly, this high dimension results in unacceptably slow performance. In [3], we

proposed that instead of averaging the probabilities over all neighborhood configurations,

the current estimation of labels can be used. The modified MASP algorithm uses only

the current estimated neighborhood for the each pixel. In this case, instead of calculating

P (g,G|x = k), it actually calculates P (g, G, Nc|x = k) as follows:

P (g, G, Nc|x = k) = P (Nc|x = k)× p(g,G|x = k, Nc). (16)

From the independence assumption, we have

P (g,G, Nc|x = k) = P (Nc|x = k)f(g|x = k)p(G|Nc) (17)

∝ P (Nc|x = k) ∗ f(g|x = k). (18)

The modified algorithm significantly improves the segmentation speed for each individual

slice, with no obvious negative impact on performance.

4.2.2 High-level Template Matching

After initial low-level segmentation, the image pixels are grouped into different types of

tissue. Since initial segmentation only relies on gray scale and highly local neighbor-

hood information, this leads to poor performance on pathological CT images, as they

may contain bruised tissues which are very similar to ventricle matter in terms of local

neighborhood intensity statistics. However, the use of templates can improve the discrimi-

nation between the two different tissue types by considering the location as a feature. The

schematic diagram of ventricle identification from initial segmentation result is shown in

Figure 4.5. First, a size threshold is applied to all candidate ventricle objects to remove
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noise and small artifacts. In experimental results, it was observed that non-ventricular

objects that resemble ventricles, i.e. bruise area, often appear very close to the edge of the

brain. Two bounding boxes are therefore used to exclude these objects; one large and one

small, both centered in the middle area of the skull. The small box applies the constraint

that all ventricle parts should be inside a certain area of the brain; the large box applies

the constraint that all ventricle parts should not exceed a certain area bound. If some

portion of a candidate object falls outside of the large bounding box, or some portion does

not fall within the small bounding box, the object is rejected. The sizes of the two boxes

were determined via experimental analysis on a training set of CT images.

Figure 4.2: Diagram of ventricle recognition.

Though the bounding boxes successfully reject most non-ventricular objects, some

are too close to the true ventricles to be excluded. Since the shape and position of the

ventricles changes across the multiple slices in a full CT scan, if the position of the current

slice in the sequence is known then more precise constraints can be used. For example,

provided the full CT scan set is available, the location of a specific CT slice in the brain

can be determined based on the resolution of the direction perpendicular to the axial plane

(referred to as the z direction) and the order of the slice. The brain atlas information can be

used to obtain the ventricle shape information at that specific location. The algorithm in
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this study use a brain MRI template set1 to extract ventricle shape information. The fourth

ventricle is not considered in this work because it is rarely used to measure the midline

shift, however the same principle can be applied for the fourth ventricle recognition. Due

to the resolution difference between CT scan and MRI scan, a slice order mapping between

these two sets are required. Figure 4.3 illustrates this mapping. Once the mapping of a

Figure 4.3: Mapping between MRI template and CT slices.

CT slice to a MRI ventricle template is known, it can be applied for the majority of all

other CT slices. While the resolution of the CT scan depends on the CT machine type and

settings, the resolution for a given set of scans is fixed. In addition, the ventricle systems

in the z-direction does not show significant variation across the training set. Therefore,

mappings can be approximated with linear form. In the method described here, these

mappings are first initialized manually and then optimized using a set of training images.

Due to the slight variance in ventricle position as well as ventricle deformation across

multiple patients, the original MRI template is enlarged via morphological dilation. The

enlarged template provides an estimation of the position of ventricles. Figure 4.4 shows

the enlarged MRI templates.

After selecting the specific MRI template through slice mapping between CT scan and

MRI scan, the template is aligned with the CT slice. The alignment is largely simplified by

1The template is generated based on the annotated images from the Digital Anatomist Interactive Atlas
of University of Washington, http://da.biostr.washington.edu/da.html
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Figure 4.4: MRI template set after dilation.

using calibrated CT scans from the ideal midline detection step, because there is no need

to rotate images for alignment. The template is resized to make sure that the bounding

box of the MRI template (which is the minimal rectangle covering the object) and the

bounding box of the CT scan are the same size. Any candidate segment that intersects

with the template is accepted as ventricular object. Figure 4.5 shows an example of

the ventricle recognition step. From the results, one can see that the ventricle parts are

successfully recognized using size, bounding box and template constraints.

(a) Original CT image (b) Ventricle segmentation re-
sult

Figure 4.5: Results of ventricle detection using bounding box constraints and template
matching. The segmented objects intersected with the enlarged template are recognized
as ventricles.

The advantage of the proposed ventricle detection method over existing image seg-

mentation approaches is that it incorporates anatomical knowledge into the detection

procedure such as in the detection of the ideal midline. In ventricle recognition, prior
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information is embodied in spatial templates derived from MRI images.

4.3 Results

4.3.1 Data

The testing CT dataset was provided by the Carolinas Healthcare System (CHS). All

subjects were diagnosed with mild to severe TBI when first admitted to hospital. The

dataset contains 40 patients. From this set, 391 axial CT scan slices are selected that

show ventricles or region that should have contained ventricles. To our knowledge, and

based on the literature of the brain CT image processing [46] [78] [103], our database is

relatively large, and as a result, the reliability of the testing results for the proposed CT

segmentation method should be at least as high as that of almost all comparable works in

this field.

4.3.2 Analysis of ICM and MASP

Since both ICM and MASP use spatial neighborhood information and probability model

in their algorithm, it is interesting to compare these two algorithms. In the following we

analyze the similarity, differences and their link between these algorithms.

Similarity

One of the two assumptions in ICM and MASP is the same, which assumes that given the

label of the pixel, its gray scale value is independent of other neighborhood labels. For

the other assumptions in ICM and MASP, the common points are that both assumptions

assume local neighborhood dependence. In sum, both methods assumes a two layer way of

viewing images. The higher layer is the label grid for each pixel location, the lower layer

is the actual image based on Gaussian distribution for each label.
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Differences

The ICM assumes Markov Random Field model to generate the label grid. This means

that the model is expressed as p(x = k|N), where x is the center label and N is the neigh-

borhood labels configuration. MASP, however, assumes that the neighborhood depends

on the center pixel, which can be expressed as p(N |x = k). The directions of dependence

is the main difference between these two methods. Other differences are the calculations

made to estimate these probabilities. In ICM, p(x = k|N) is calculated using a defined

probability function, e.g., using ratio of labels in the neighborhood to calculate the prob-

ability function. In MASP, the probability p(N |x = k) is estimated from the image by

counting the proportion of each pattern. If the number of distinct labels K is large, MASP

is computationally expensive because the number of neighborhood pattern is Kn, where

n is the number of pixels defined in neighborhood.

Relationship between ICM and MASP

It can be proved that the objective functions used in modified MASP as in 4.2.1 and

ICM are equivalent, the only difference is the different approaches to evaluate conditional

probability functions based on the different assumptions made in the two cases. For ICM,

the probability function being evaluated is

P (x = k|g,Nc) ∝ f(g|x = k)p(x = k|Nc) (19)
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Modified MASP attempts to maximize the following function with different label k:

P (x = k|g, G, Nc) ∝ P (x = k)P (Nc|x = k)f(g|x = k) (20)

= P (x = k, Nc)f(g|x = k) (21)

= P (x = k|Nc)f(g|x = k)P (Nc) (22)

∝ f(g|x = k)P (x = k|Nc) (23)

= P (x = k|g, Nc) (24)

As it can be seen, in terms of formal expression, both ICM and modified MASP try to

maximize the probability of P (x = k) conditioned on its gray scale g and its current

estimated neighborhood Nc. The difference between modified MASP and ICM are that

ICM use MRF to model the probability function P (x = k|Nc), which is later estimated

using current estimated labels, modified MASP use the current estimated labels directly

to estimate the probability P (Nc|x = k). Since they both use the same objective function

to choose labels, ICM and modified MASP should have similar labeling result. However,

because the large space of neighborhood configuration, using image data for probability

estimation may not be sufficient. Therefore ICM seems a safer method of using spatial

information.

Illustration on CT Data

In order to assess and compare the performance of the segmentation algorithms, we apply

both methods on the CT dataset. For ICM, the simplest non-degenerated MRF is used

and β = 1.5 [7]. For MASP and modified MASP, 8-neighborhood is used. Each algorithm

runs for 10 iterations, given a starting label map generated via k-means with fixed seeds
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initialization. As a baseline, K-means result is also presented. The difference between

K-means, ICM, MASP and modified MASP can be seen in Figure 4.6. From the result we

(a) Original CT image (b) CT Image without
skull

(c) K-means (d) ICM

(e) MASP (f) Modified MASP

Figure 4.6: Comparison of Segmentation methods

can see that ICM, MASP and modified MASP have smoother effect than simple K-means.

This is due to the incorporation of local neighborhood information into labeling pixels.

Compared to MASP, ICM has very clear boundary and shows a suitable performance

dealing with noise. However, due to the smoothing effect, ICM also loses some detailed

information, e.g., the upper horn on the lateral ventricles. MASP tends to maintain more

details in segmented result, however it also keeps noisy part inside. For example, on the

upper right corner, a part of the bruise region is classified as ventricle class. Since modified

MASP has similarity with both ICM and MASP, it shows intermediate segmentation result,

i.e., it shows more noise than ICM while keeping some detail of horns. However, it has

less noise than MASP. Testing results on other CT images show similar characteristics of
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these algorithms.

4.3.3 Results of Ventricle Segmentation

Since ICM is faster and has smoother result than MASP, ICM is used as our low-level seg-

mentation method for evaluation of the proposed entire ventricle segmentation method.

Then template matching method is used to recognize ventricles. Evaluation of final ven-

tricle recognition was done by visual inspection conducted by the participating physician.

Here two measurements are defined to evaluate the result. The first is a sensitivity-like

measure. It is the rate of slices in which ventricular regions are correctly detected as

ventricle. The second is a false positive-like measure. It is the rate of slices in which non-

ventricular regions are incorrectly detected as ventricles. The sensitivity-like measure,

denoted as Ms, and the false positive-like measure, denoted as Mf , can be illustrated in

the following equations:

Ms = S/N, (25)

Mf = F/N, (26)

where N is the total number of CT slices, S is the number of slices in which ventricular

regions are correctly detected, F is number of slices where non-ventricular regions are

detected as ventricles.

In the experiment, for the sensitivity-like measure, the rate is 100% because all ven-

tricles are identified in all slices. The false positives-like measure is 8.59%, i.e., 33 out of

391 slices have falsely classified ventricles. These false positive objects in CT slices either

included non-ventricle objects, e.g. areas of edema, or detected objects in slices where

no ventricles were originally visible, which implies some mismatch between the adopted
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segmentation method and segmentation based on physician’s interpretation. The impact

of these false positive objects may mislead the actual midline using shape matching later.

Thus it is very important to control the false positive low enough.

4.4 Conclusion

This study provides a method for automatic ventricle segmentation as well as an ideal

midline detection algorithm using axial head CT images. First, an accurate ideal midline

detection method is proposed, and used to correctly align the scan set based on the

ideal midline. This is crucial step before using any template matching later because it

avoids the need to shift or rotate templates, and therefore simplifies registration. Then

low-level segmentation and high-level ventricle recognition using template matching are

applied. Our method offers the following improvements over existing approaches: accurate

detection of ideal midline, ventricle recognition using both anatomical features and spatial

templates derived from MRI images. In addition, ICM and MASP are analyzed and

compared both mathematically and experimentally. The relatively large size of the CT

dataset used for testing makes the results of this study more reliable.
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CHAPTER 5 Gaussian Mixture Model (GMM) Based

Initial Low Level Segmentation in CT Images

5.1 Introduction

The work presented/proposed in this chapter intends to further improve the initial low-

level segmentation in brain CT images using Gaussian Mixture Model (GMM). The GMM

method was first used for segmentation of noisy MRI scan in [29]. This work adopts the

Gaussian Mixture Model (GMM) [29] method to segment ventricular system in brain CT

scans. The results are compared with K-means clustering based segmentation and Iterated

Conditional Modes (ICM) [6]. The difference between GMM used here and other simple

Gaussian modeling methods is that it uses both intensity value and location features.

Furthermore, each part is modeled with multiple Gaussians which makes it capable to

model concave shapes. Generally, The GMM method has the following benefits:

• GMM can provide smooth boundaries

• GMM can easily incorporate prior information, such as location and texture infor-

mation

• GMM models different parts naturally

These benefits will be explained by analyzing experiment results.

50
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5.2 Methods

5.2.1 Gaussian Mixture Model for Image Segmentation

An image is composed of individual pixels. There are very close relations between neigh-

boring pixels, such as similar intensity values. Because the composition of a meaningful

image is not a random combination of pixels, pixels can be grouped together according to

similar features. This will increase the granularity of representation. The Gaussian Mix-

ture Model assumes that each segmentation part can be modeled as one or more Gaussian

distributions. A simple example of GMM application is background and foreground seg-

mentation based only on intensity value. An image background typically has very similar

local intensities. The same thing is assumed for foreground. It is also assumed that the

intensity overlap between foreground and background is small. The intensity distribution

of background and foreground can therefore be modeled using multiple Gaussians. In this

work, the same idea is adopted for modeling different parts of brain tissue in CT images.

This application considers not only the intensity value, but also the location feature of

each pixel. Therefore, each Gaussian is actually a multivariate Gaussian distribution.

To estimate the Gaussian Mixture Model parameters, the Expectation-Maximization

(EM) [19] algorithm is used to adaptively learn all parameters starting from some initial

values. The main idea of the GMM method used here is described in [29], where it is

called Constrained Gaussian Mixture Model (CGMM). In [29], GMM is applied for noisy

MRI images segmentation. Compared to MRI scan, CT scans have more noise, therefore

the GMM method is expected to offer good performance on CT images too. The following

section will explain the use of the GMM method for image segmentation.
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GMM and Parameter Estimation

The Gaussian Mixture Model has the following probability distribution for each sample

point, i.e., each pixel,

f(vt|Θ) =
n∑

i=1

αifi(vt|µi,Σi), (27)

where vt are feature vectors of pixel t. In this study, the vector includes location and

intensity values. Θ represents the model parameters including αi, µi and Σi, i = 1, · · · , n.

Parameter n is the total number of Gaussian distributions, αi is the weight controlling the

contribution of the ith Gaussian, and µi and Σi are the corresponding mean value and

covariance matrix of the ith Gaussian. Since both location and intensity information are

used, the parameters can be decomposed in the following manner:

µi =




µXY
i

µI
i


 Σi =




ΣXY
i ΣXY I

i

ΣXY I
i ΣI

i


 (28)

The superscripts XY and I mean location coordinate values and intensity value respec-

tively. Equation 27 gives the probability of a certain pixel’s appearance with feature vt.

Suppose there are k different parts to be separated in an image, and each part is modeled

by li, i = 1, · · · , k Gaussian distributions. The value of interest is the posterior probability

p(vt ∈ partj |vt), as this decides which part the pixel is most likely to belong to (maximiz-

ing a posteriori probability). The equation for calculating the posteriori probability will

be explained in 5.2.3.

In the GMM used in this work, a constraint can be put on the covariance parameters.

It is assumed that there is no dependency between the location parameter and the intensity

parameter. This assumption is natural because a part can have arbitrary shape indepen-
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dent of its intensity values. This reduces the number of parameters to be estimated. There

are several options to decide Gaussian relation with each other. First, all Gaussians can

have their own independent mean and covariance matrix. So in the EM training step, all

these parameters will be updated independently. Another way is to consider all Gaussians

belonging to the same part as sharing similar intensity value, so the intensity component

in the mean parameter of the same part will remain the same for each update. In this

case, intensity covariance can be updated independently or together with all Gaussians

in the same part. The algorithm presented here follows the approach used in [29], which

keeps both mean and covariance of intensity parameters the same for a single part. For

the location component in mean and covariance, every Gaussian is updated independently,

since the shapes of one part in different locations are not related.

In order to describe the connection between Gaussians and the tissue parts, a mapping

between the Gaussian distribution index and the part index is introduced. Define π :

1, · · · , n → 1, · · · , k as the mapping from the index set of Gaussian to the index set of

tissue parts. With the assumption of independence between intensity feature and location

feature in each Gaussian, the parameters in GMM can be described as follows:

µi =




µXY
i

µI
π(i)


 Σi =




ΣXY
i 0

0 ΣI
π(i)


 (29)

Once an initial estimate of each parameter has been calculated, the EM method [19]

can be used to update each parameter iteratively. The detailed equations can be found

in [29]. The EM method is known to be very sensitive to the initial values, so suitable

initialization of these parameters is crucial.
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5.2.2 Initialization of Gaussian Mixture Model

This first step determines the total number of Gaussians, the means, the covariance ma-

trices, the weights and their associated part index. This section will briefly explain ini-

tialization; a more detailed description can be found in [29]. Since the intensity value

of each pixel has a corresponding physical meaning, this should be counted as primary

information for segmentation. This naturally leads to the use of K-means to group pixels

based on intensity value. Since the number of tissue parts in CT images does not change

significantly, the number of clusters can be considered fixed. This alleviates the main chal-

lenge in clustering - i.e. how to decide the number of clusters. This study uses 4 clusters

to model skull and blood, ventricular tissue, dark gray tissue and light gray tissue. For

each clustered region, a criterion is applied to test each non connected region to check how

much percentage of that part is in its inscribed ellipse. If the percentage is larger than

a threshold value, the region is represented by a single Gaussian. Otherwise the region

is split into two regions based on K-means separation based on location. This is a top

down procedure to make sure every region is well represented by a Gaussian distribution.

Figure 5.1 shows the results of K-means initialization and Gaussian parameter estimation.



www.manaraa.com

55

(a) (b)

(c)

Figure 5.1: Figure 1(a) is the original CT image with smooth Gaussian filtering. Fig-
ure 1(b) is the segmentation result with K-means. Figure 1(c) is an illustration of Gaussian
initialization, where each ellipse represents 1σ size in each direction.

5.2.3 Segmentation based on Probabilistic Model

After all parameters are estimated using EM, the posterior parameters can be calculated

using the Bayes rule.

p(partj |vt) =
p(vt, partj)

p(vt)
∝ p(vt, partj) (30)

p(vt, partj) = Σi∈π−1(j)αifi(vt|µi, Σi), j = 1, · · · , k. (31)
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In Equation 31, π−1(j) returns all Gaussian indexes belonging to part j. Then the most

probable label for pixel vt is

part labelt = arg max
j∈1,··· ,k

p(vt, partj) (32)

Figure 5.2 presents the segmentation results after each iteration of EM. The CT image

used is the same as in Figure 5.1.

5.2.4 Ventricle Recognition

GMM segmentation is a very low level segmentation procedure. It is based on intensity

value and Gaussian blob modeling to prevent abrupt label changes. However, not all

Gaussians with similar intensity value correspond to the same tissue type in brain CT

images. For example, in CT images from TBI cases, there are often bruised areas which

have very similar intensity value to ventricular tissue. There are also air blobs in the brain,

which appear as dark areas in CT images and will be grouped as ventricles by GMM. More

information is required to separate these parts from ventricles. Since ventricles have an

approximately fixed position in the brain, a template to represent this location information

can help separate them from non-ventricle parts. This study applies the same strategy as

in [14]. Three constraints are used to exclude non-ventricle parts:

• Constraints on the size of segmented region

• Constraints on the location of ventricles using the brain bounding box

• Constraints on the location of ventricles using the ventricle template
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The size constraint removes small noise, fragmented part. The brain bounding box ex-

cludes most of the bruised areas because they often occur close to the skull boundary. The

ventricle template provides more accurate location information to exclude non-ventricle

areas. The ventricle templates are extracted from a standard brain MRI scan and are en-

larged using morphological dilation to accommodate variations among different subjects

and pathological cases. Figure 5.3 shows a set of template images. Figure 5.4 illustrates

the ventricle recognition result of one CT slice.

5.3 Results

5.3.1 GMM Results and Comparison with other Methods

This section compares the results of the GMM method with ICM and K-means. Prior to

segmentation, a median filter is applied to all CT images. This results in smoother seg-

mentation using K-means clustering. Both ICM and GMM use the K-means segmentation

for initialization; the model parameters are then estimated and updated iteratively.

The test CT dataset is provided by the Carolinas Healthcare System (CHS). All sub-

jects were diagnosed with TBI. The dataset contains 40 patients, and 391 axial CT scan

slices are selected from regions where the ventricles typically appear. The size of each CT

slice is 512*512 pixels.

The results are evaluated manually via visual inspection. In general, the GMM method

achieves better segmentation than ICM and K-means.

Figure 5.5 presents several CT image segmentation results using different methods.

From the results it is clear that GMM provides better separation of close objects. K-

means merges close objects together since it is only based on intensity value, and leaves

small holes in other parts. ICM merges close objects due to the neighborhood label
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having bigger influence than its a pixel’s own intensity value. Large close objects with

the same label therefore tend to merge together. The GMM method includes the location

information and allows different labeled regions to compete for territory. In the presented

example, the gap will not simply shrink but compete with other close objects to gain more

territory. Since posterior probability is based on both intensity value and location, larger

close parts with other label may not have high probability in terms of location feature.

5.3.2 Complexity Analysis and Speed Improvement

The most time consuming component of the GMM model is parameter estimation using

EM. In the Expectation step (E-step), the probability of each pixel with each Gaussian

must to be evaluated. Suppose there are n Gaussians and the image pixel number is

T ; the probability must then be calculated n ∗ T times. Each calculation involves a

multivariate Gaussian probability evaluation, which is time-consuming compared to other

operations. However, for each Gaussian only close pixels will be influenced. As the distance

increases, the probability value decreases exponentially. Based on this observation, the

probability of pixels only needs to be calculated within a certain range, say 10σ away from

the mean location, where σ is half length of the main axis of the ellipse shape based on

each Gaussian’s covariance matrix. This improves the segmentation speed considerably.

In this study, for a CT image with 500 Gaussians, it takes about 3.5 minutes to finish 4

iterations on a desktop computer with a dual core 3GHz CPU and 4GB of RAM . There

are also other sophisticated ways to further improve the speed of GMM evaluation, e.g.,

many methods are provided in [11].
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(a) initial state

(b) iteration 1

(c) iteration 2

(d) iteration 3

Figure 5.2: Iterative EM update and corresponding segmentation result. As can be seen
in the figure, GMM method separates the upper lateral ventricles successfully. Another
change is that the lower left part of ventricle is growing into a round shape. This illustrates
GMM’s ability to control the segmentation result using regular or simple shape. This
feature of GMM controls the complexity of boundaries and thus leads to relatively smooth
segmentation results with certain initialization granularity.
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Figure 5.3: Enlarged ventricle templates extracted from brain MR images.

(a) CT images (b) Recognized Ventricles

Figure 5.4: Ventricle recognition result. Skull edge, bounding box and ventricle template
are outlined. Ventricles are shown as dark gray. Other parts with similar intensity value
are excluded based on constraints and are shown in light gray color.
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(a) CT image

(b) GMM result

(c) ICM result

(d) K-means result

Figure 5.5: Ventricle segmentation results of GMM, ICM and K-means. GMM separates
the upper pair of lateral ventricles better than ICM and K-means.
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CHAPTER 6 Actual Midline Estimation Using Shape

Matching and Midline Shift Calculation

6.1 Introduction

Based on segmentation of ventricles, the actual midline that lies between the left and

right lateral ventricles or through the third ventricle can be estimated for midline shift

measurement. Due to many factors such as poor quality of CT images, the result of such

segmentation processes is often inaccurate and includes artifacts such as false positives and

missing parts, as shown in Figure 6.1. The variations of ventricle shapes also complicate

the estimation of actual midline. For the slices that include lateral ventricle, the actual

midline usually splits the left and right lateral ventricles. For a CT slice in which the

left and right lateral ventricles can be distinguished and can be separated very clearly,

a simple approach to estimate the midline is to project the region containing the lateral

ventricles in one direction and to identify the splitting point by minimizing the number of

pixels on one projection. This method may work well if it is fed with very well segmented

regions, with very little noise or mis-segmentation. However, this is often not the case in

the brain CT scans, as illustrated in Figure 6.1.

The method proposed in this thesis follows a computer vision approach using shape

matching. Since the result of the ventricle segmentation is a binary image (ventricle

regions as object and non-ventricle regions as background), all that can be seen in such a

binary image is the shape information. In order to identify different regions of the ventricle

and estimate the actual midline, a mapping can be built between the segmented shape

62
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Figure 6.1: The wrong estimation of actual midline (straight line in the figure) based on
minimal cut.

and a standard ventricle template with annotated information. For instance, considering

the bilateral ventricle slice, if the edge points in the middle on the left and right lateral

ventricles are detected, a midline can be estimated that separates the left and right side.

The approach in this thesis seeks to match/register ventricle templates with the segmented

ventricle shapes in order to identify the feature points from point correspondences between

the shapes.

Shape matching is a fundamental problem in computer vision. Based on the shape

representation, shape matching methods can be divided into two types: feature-based

methods and intensity-based methods. The first method extracts silhouette images from

the shape, which do not have holes or internal markings. Fourier descriptors can be

used to capture the curve information, e.g. [104] [73]. A comprehensive comparison of

different silhouettes based methods is given in [45]. Other feature based representation

methods are based on graph structure, including skeleton [88] and shock graph [86]. The

limitation of the silhouette-based method is that it ignores internal structure, leading to

loss of some important information. Another problem is that silhouettes are not easy to
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extract. Recently a wavelet based method has been developed to extract density from

shape points, showing promising results [74]. The second group, intensity-based methods,

use the gray/color image directly. Cootes [16] applies a statistical model to iteratively

match points based on intensity value. This gives correspondence between the model and

the points on images. Other intensity based methods use classifiers to classify different

shapes [68]. Since one needs explicit correspondence to derive feature points after ventricle

segmentation, these methods are not considered in this research. The method in [4] uses

simple sampling of shape, introducing shape context descriptor to represent shapes. This

method is very effective and robust, and is therefore adopted for ventricle shape matching

and midline estimation.

6.2 Actual Midline Estimation

6.2.1 Specifying Feature Points

The first challenge is how to define an actual midline from a CT scan. In general, the actual

midline should separate two lateral ventricles and pass through the middle of the third

ventricle. However, in order to identify the midline automatically, this definition must

be made more specific. Since ventricular shapes are irregular, due to variations among

different people and considering different pressure levels inside the brain, it is not easy to

find a simple mathematical method to define the midline. The approach proposed in this

thesis first identifies some feature points on the shape, e.g., the edge points between the

bilateral ventricles, and then uses these points to estimate the midline. Because the shape

of the third ventricle is entirely different from the bilateral ventricles, feature points for

different CT slices need to be specified for individual slices. Figure 6.2 shows the templates

with feature points, which are manually labeled. For each template shape, feature points
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on the left side and right side are specified with a brighter color. Considering the fact that

in some pathological cases some ventricular regions may be absent or be fused together,

another 8 template variations representing these pathological cases were formed and added

to the list of template used for different slices. Figure 6.3 shows the extra templates. All

of these templates are formed from MR images that allow a more accurate imaging of

the ventricles and their locations. Based on the slice location in the CT scan and MRI,

a coarse mapping between the CT slice and templates are estimated. For each CT slice,

besides the coarse matched template slice, 4 superior and inferior template slices are also

included as matching candidates.

6.2.2 Shape Matching Between Templates and Segmented Ventricles

For shape matching, a modified version of the shape context method [4] is adopted. This

is used because it is a point-based shape matching approach. This is more suitable than

curve or contour based methods, which are too strict in assuming that all segmented shapes

form a single connected curve or contour. It is not simple or sometimes even possible to

extract the exact curves or contours of ventricles needed from the CT slices. For point

based shape matching, only point sampling from the desired shape is required. Also, the

shape context method is very robust to deformation, outliers and noise, which is very

important in particular for slightly pathological cases processed using ventricle templates

representing normal brains.

Here a simple description of the modified version of shape matching using shape con-

text, proposed by this research is given; other details about the shape context can be found

in [4]. First, shapes are sampled uniformly, usually by taking edge points because these

points represent the shape better than other points such as points inside solid areas. In
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Figure 6.2: 15 ventricle templates from MR images.

addition, dummy points can be added that not only make the number of matching points

equal but also allow outlier matching in two shapes. The shape context is a descriptor

used for each point in the sampled shape. It views all other points from its position and

computes the histogram of the distribution. The histogram binning is uniform in log-polar

space, which emphasizes the points close to the center points. Figure 6.4 shows an example

of formation of such a histogram1.

After computing all the shape context descriptors, a matching cost is defined for a

1This figure is inspired by [4]
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Figure 6.3: 8 extra variations of ventricle templates.

point pi on the first shape and qj on the second shape, as follows:

Cij ≡ C(pi, qj) =
1
2

K∑

k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
, (33)

where hi(k) and hj(k) denote the K-bin normalized histograms at pi and qj , respectively.

Then the shape matching can be achieved by minimizing the following cost function:

H(π) =
∑

i

C(pi, qπ(i)), (34)

subject to the constraint that the matching be one-to-one, i.e., π is a permutation. The

permutation function π can be defined as a mapping from one arrangement to the other

arrangement such as π : S → S, where S is the set of 1, 2, · · · , n. This is an bipartite

graph matching problem which can be solved by the Hungarian method [70]. The next

step is modeling the transformations using the thin plate spline (TPS) model [21] [62],
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Figure 6.4: (a) and (b) are the sampled edge points of the two shapes. (c) is the diagram
of the log-polar bins used to compute the shape context. (d) is the shape context for the
point p21, (e) is that of point p11, and (f) is that of point p22. (d) and (e) are the shape
contexts for two closely related points which are similar (this can be seen from the white
gaps in both images). However, the shape context in (f) is very different from the previous
two. The shape context matrix colormap for the images is inverted before displaying.

which is a commonly used nonlinear transformation. The coordinate transformation is

modeled using two separate TPS functions, i.e., fx(x, y) and fy(x, y).

(x
′
, y

′
) = T (x, y) = (fx(x, y), fy(x, y)). (35)

The fx(x, y) or fy(x, y) has the form:

f(x, y) = a1 + axx + ayy +
n∑

i=1

wiU(||(xi, yi)− (x, y)||), (36)

where the kernel function U(r) is defined by U(r) = r2logr2 and U(0) = 0 as usual.

a1, ax, ay, wi are the coefficients to be estimated given a set of corresponding points (xi, yi)
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from the first shape and (x
′
i, y

′
i) from the second shape. The TPS transformation and

shape context matching iterates several times to optimize the mapping. Bending energy

can also be used as the component for calculating the similarity of two shapes [4]. The

motivation for using transformation modeling is that overly-complex transformations can

be penalized using regularized TPS. In addition, this method is used to generalize the

point correspondence to any point in the space.

In this thesis, only the cost function of shape matching is used to measure the similarity

between segmented ventricle shapes and templates, and TPS modeling is not used. The

reason for not using TPS modeling is that even though TPS iteration can adjust some

mis-matching points, it does not improve the results too much if the mis-matched points

are too far away from the points that should be matched.

6.2.3 Challenges in Ventricle Shape Matching for Pathological Cases

In pathological cases, different ventricular parts may shift away from each other or move

closer; this changes the relative positions of these parts. For example, the distance between

the left and right lateral ventricles in pathological CT scans may be bigger than that in

of templates. This will change the histogram of each sampled point and make the shape

matching with template a challenging task. The second common issue is that different

ventricular parts may change their size in different scale. For example, in some CT slices,

while the left lateral ventricle shrinks, the right ventricle expands. If the point sampling

process is uniform, this will result in the shrinking part being underrepresented (i.e., fewer

sampling points are sampled from this part). On the other hand, the sampled template

shape assumes the same scale on both lateral ventricles and has close number of sampling

points for both sides. This sampling inconsistency of matching regions (parts) may cause
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(a) (b)

Figure 6.5: Comparison of simple shape matching and multiple regions shape matching.

superfluous points of one region matched to the other regions. While these two problems

can not be fixed by global rigid registration because the deformation is not global, a local

deformation may be alleviated by local non-rigid deformation [35]. In this thesis, these

problems are addressed in a multiple regions shape matching scheme. Figure 6.5 shows the

problem of entire shape matching as well as the result of the proposed method. Figure 5(a)

is the result of shape matching with the entire shapes, which exhibits the mis-matching

points between left and right sides. Figure 5(b) is the result of multiple regions shape

matching. The template is in red and the segmented ventricles in green. The blue lines

represent the correspondences.

6.2.4 Multiple Regions Shape Matching

The main idea is that first a shape matching is done with all regions between the segmented

ventricle shape and the template. Then the corresponding regions of the two shapes are

estimated and grouped into several sets based on the initial matching result. For each set

of corresponding regions from the two shapes, points are sampled and shape matching is
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performed again. The algorithm is further described using the following example. Consider

two shapes A and B. Shape A has three regions A1, A2 and A3, while B has four regions

B1, B2, B3 and B4. Both shapes A and B are sampled with uniform sampling, upon which

a shape matching is done between them. After the initial match, based on the estimation

from the point correspondence, suppose A1 is matched to B1, B2, A2 is matched to B3,

and A3 is matched to B3, B4, which in total forms three matching sets. For each set,

e.g., A1, B1, B2, sampling is performed again to obtain the same sample points from A1

and B1, B2, then shape matching is performed inside the set without considering other

regions. This means that all shape contexts are calculated using only shape regions inside

the set. This multiple regions shape matching scheme can deal with the problems explained

previously assuming the correct estimation of matching regions sets. In the second shape

matching, since other non-matched regions are not considered in the histogram calculation,

the location changes of these regions will not influence the shape matching inside the

matched regions set. Because of the resampling in the second shape matching, shrinking

regions will have the same number of points represented in the matching process. The

multiple regions shape matching scheme is listed in Algorithm 1.

Algorithm 1 Multiple Regions Shape Matching
1: Entire shapes sampling and initial shape matching
2: Group matched regions into several matching sets
3: for each matching set do
4: Resample these regions to have the same points from each shape
5: Do shape matching with these points
6: end for
7: Put all matching points together and calculate the total matching cost

There are still two questions to be answered: how to estimate the matching regions and

how to calculate the matching cost from several matching regions. For the first question,
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note that each pair of corresponding points is associated with a matching cost. Using a

threshold on the matching cost, 30 percentile in the application, the most reliable corre-

spondences can be selected. Applying a statistical analysis of the selected correspondence,

regions can be grouped into different sets. The detailed steps are listed in Algorithm 2.

Algorithm 2 Group Matched Regions
1: Set a cost threshold to select reliable matches
2: for each region Ai in the first shape A do
3: Calculate the average number of matched points ni from Ai to regions in shape B
4: Any region Bj has more than 0.5 ∗ ni matched points to Ai are related with Ai

5: end for
6: Do the same process on the second shape B to build regions relation with shape A
7: The shape regions that are related directly or indirectly through other regions form a

set of matched regions

The total matching cost of the two entire shapes is calculated based on each matching

set. First the matching cost of each set calculated from 34 is normalized by the number of

sampling points. In order to give more weights to the matching cost of the larger regions,

the total matching cost is the weighted average of the costs for matching regions based on

region area, which can be the sum of areas from the matching regions. Figure 6.6 shows

the top 3 matching costs between the templates and the segmented ventricle shape. The

segmented ventricle is in green, the template in red and correspondence in blue.

6.2.5 Estimation of the Actual Midline

Based on the identified feature points on the ventricle shape from shape matching, the

actual midline can be estimated. Since the feature points are labeled as left side and

right side, a simple way is to use the average of left side mean and right side mean

of the x-coordinates to define the x-coordinate of the midline. This simple estimation

method is used here, however more sophisticated estimation method can be applied to
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(a) (b) 0.3350 (c) 0.3403

(d) 0.3419

Figure 6.6: Segmented ventricles are matched with 3 templates.

further improve the method. Figure 6.7 shows several estimated actual midline for different

ventricle slices. The green lines are the estimated actual midlines and the blue dots

represent the best matched template. Matched feature points on the left side are in red

and right side in a darker red. As it can be seen, the actual midlines are successfully

estimated by the identified feature points.
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Figure 6.7: The actual midline estmation results.

6.3 Results

6.3.1 Data

The testing CT dataset was provided by the Carolinas Healthcare System (CHS). All

subjects were diagnosed with mild to severe TBI when first admitted to hospital. The

dataset contains 40 patients. From this set, 391 axial CT scan slices are selected that

show ventricles or region that should have contained ventricles. To our knowledge, and

based on the literature of the brain CT image processing [46] [78] [103], our database is

relatively large, and as a result, the reliability of the testing results for the proposed CT

segmentation method should be at least as high as that of almost all comparable works in

this field.

6.3.2 Evaluation of Actual Midline Estimation

The same dataset is used for testing actual midline detection as for ventricles segmentation.

Some of the 391 CT slices cannot be processed by the proposed method. Specifically, there

are three classes for these non-applicable images. The first includes images in which no

ventricle falls inside the template. The second category includes images where ventricles
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segmentation has been done inaccurately. This often happens in segmentation results

that include edema which are very close to the ventricles. The third class occurs when

one or both of the lateral ventricles are completely missing in the images. In such cases,

ventricle segmentation result cannot be used even by a human expert to draw the actual

midline. After a Gaussian Mixture Model (GMM) based segmentation process [13], manual

drawing of the midline in ventricle area on the segmentation result is done by participating

radiologists. The slices in which one side of the lateral ventricle is missing or the ventricles

are not visible are not applicable for visual inspection and thus excluded. As such, 264

manually tagged slices are collected and used.

Since almost all manually tagged midlines are either in the exact vertical direction or

tilted with a very small angle, the quality of the estimated midline is evaluated based on

the aggregated x-coordinate, which is the average x-coordinates of all points on the actual

midline. The resolution of CT images is 512 ∗ 512, with the pixel spacing of 0.4492 mm.

We specify 5 pixels as the tolerance threshold, which is equivalent to 2.25 mm in real

physical dimension. This threshold seems reasonable because in diagnostic applications,

midline shift greater than 5 mm is thought of as serious and needs to be taken care of.

With this threshold, the success rate of our method is 87.9% (232/264). The mean value

of the error is 1.23 pixels and the standard deviation is 1.34 pixels among the successful

slices. This is very promising considering that all processed images are pathological CT

slices from TBI patients. Figure 6.7 presents some images for actual midline detection.

After the actual midline is estimated, the calculation of the horizontal midline shift s

is straightforward:

s = |xideal − xest| (37)
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where xideal is the x coordinate of the ideal midline, and xest is the x coordinate of the

estimated actual midline. Figure 6.8 shows both the ideal midline and estimated midline.

(a) Original CT image (b) Midline shift estimation

Figure 6.8: The left line is the ideal midline and right line is the estimated actual midline.

6.4 Conclusion

As supported by experiments, the proposed multiple regions shape matching method ad-

dresses the problem in shape matching of deformable and complex structures. The actual

midline estimation shows very robust performance on diverse ventricle shapes, which is

vital for pathological cases. Because the algorithm follows a computer vision approach, it

handles the variations in different segmented ventricle shapes in a intuitive and effective

way using a few ventricle templates.
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CHAPTER 7 Application: Intracranial Pressure (ICP)

Prediction

7.1 Introduction

Elevated Intracranial Pressure (ICP), is a very common secondary injury in TBI that

if not treated in time can result to potentially deadly consequences such as ischemia

or herniation. A standard and accurate method of monitoring ICP is inserting pressure

sensors inside ventricles through a brain surgery, which may cause infection and both short-

term and long-term damages to the brain. Due to the invasive nature of this monitoring

system, non-intrusive screening/pre-screening of ICP is highly desirable even though such

screening process may not be as accurate as the intrusive surgery. Rather, the non-surgical

ICP estimation can serve as pre-screening procedures to assist care-giver in making decision

on whether or not an intrusive monitoring is necessary. CT scan is one of the main sources

of diagnostic information in exploring the brain state in TBI care. The reason for choosing

CT scan instead of other imaging modalities, such as MRI, is that CT scan is still the gold

standard for initial TBI assessment [63]. Moreover, CT has the advantage of revealing

hematoma or bone fracture with reasonable resolution. CT also has low cost and fast

scan speed. In the application described in this chapter, multiple non-intrusive sources

of measurement are collected and analyzed in order to extract informative features with

respect to the range of ICP; then a classification model is built that considers these features

to predict the level of ICP.

77



www.manaraa.com

78

7.2 Features Extraction

Hematoma and edema are two common pathological features in traumatic brain injury,

e.g., in the case of brain contusion, these two are the main factors. Because of the swelling

effect from hematoma or edema, the brain structure may shift to the opposite side of the

location of swelling. The midline (the intersection between the fissure separating the two

hemisphere and the axial plane) often shift from the middle to one side. This midline shift

will be measured as a possible feature for predicting ICP level. Another useful feature is

the blood amount due to hematoma or hemorrhage. The bleeding area may push other

brain tissues to the side and increase the pressure inside the brain. The third set of features

investigated is the texture patterns of the brain tissue. Because of high pressure inside the

brain, the texture of both the gray matter and the white matter may change, e.g., these

brain tissues get denser than normal state. All these three sets of features are extracted

from brain CT scans. Specifically, all these features are extracted from each CT scan slice,

and then aggregated by combining the same type of features from multiple slices in a CT

scan as feature representing the entire CT scan. Besides these features extracted from the

CT scan, demographic information, such as patient age, and medical score, such as Injury

Severity Score (ISS) are also included. These features may also provide extra information

to the model of predicting the ICP level. In the following sections of this chapter, the

extraction of each set of features are described in more detail.

7.2.1 Midline Shift

The midline shift measurement is one of the most characteristic feature of ICP elevation.

The shift for every CT slice is estimated using the techniques described in the previous
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chapters.

7.2.2 Blood Amount

The measurement of blood amount is based on the Gaussian Mixture Model (GMM) seg-

mentation result of the CT slices, because the segmented CT slices have already classified

each pixels into four categories: blood, ventricles, gray matter and white matter [13]. Fig-

ure 7.1 shows the segmented result from GMM segmentation. By counting the number

of pixels classified as blood for each slice and summing them up, a feature as the total

number of blood pixels is formed that quantifies the blood amount.

(a) Original CT image (b) GMM segmentation map

Figure 7.1: The GMM segmentation result of the brain. The blood regions are represented
as the brightest gray level in the segmentation map.

7.2.3 Texture Pattern

CT imaging does not provide a high resolution for the brain tissue as MRI does, and as

such it cannot differentiate dozens of brain structures clearly; in the CT slices the brain

structures are not clearly separated and represented. However, some regularity or pattern,

even though scattered, may still be present inside the CT slices that although hidden

to human eye can be processed and used for ICP prediction by effective mathematical
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algorithms. One possible pattern/regularity may be that with the increase of ICP, the

density of the brain tissue increases because of the compression, which may result in the

change in the appearance/texture of the CT images. Such possible patterns motivate the

texture analysis on the CT images for ICP prediction. For each CT slice, six rectangular

sub-images (windows) are selected to contain the brain tissue in that region while avoiding

blood and ventricles regions. Several different types of texture analysis can be applied in

this application [38] [1]. Here a brief description of the main techniques for extraction of

texture features used in this research are provided.

The first set of texture features is generated using histogram with 10 bins. The mean,

variance of the histogram are extracted as texture features. A smoothness feature R =

1 − 1/(1 + σ2) which is a function of variance σ2 is also calculated as a texture feature.

The fourth feature is the variance of the image region.

The second set of texture features is generated using Grey Level Run Length Method

(GLRLM) [97][82][23], which extracts higher order statistics of the texture using a matrix

R(θ) = [r(i, j|θ)]. The element r(i, j|θ) is the number of consecutive runs of length j at

gray level i in the direction θ. In this application, 0, 45, 90 and 135 degrees are used for

θ. By using different weighting scheme, 11 features can be extracted from the matrix to

represent the regularity and periodicity of the image.

The third set of texture features is generated using Discrete Fourier Transform (DFT).

After the DFT of the sub-image is calculated, the maximal, minimal, median and mean

value of the amplitude of DFT, as well as the frequency corresponding to the median value

of amplitude of DFT are extracted as the texture features.

The fourth set of texture features is generated using wavelet packet transformation.
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First the image region is decomposed into the second level with Haar wavelet. This

generates 16 images on the second level. Then the energy of each image is calculated as

texture features. The last feature is the entropy calculated using the energy features.

The fifth set of texture features is generated using Dual Tree Complex Wavelet Trans-

form (DTCWT) [42] [87]. Dual tree complex wavelet transform is designed to overcome

some shortcomings when applying Discrete Wavelet Transform (DWT) in higher dimen-

sion (e.g., image processing), such as oscillations, shift variance and lack of directionality.

In image processing applications, this method is known to be free of checker board artifact

and to provide 6 directional wavelets. In this application, the entropies calculated from

coefficients of the lowpass sub-band and the highpass sub-band of each level are used as

texture features.

Overall, 48 texture features are collected for each sub-image region and then averaged

across the six sub-images.

7.2.4 Demographic Information and Injury Score

Ages of each patient is considered as the main demographic information. Injury Severity

Score (ISS) as the main measure of traumatic injuries is also selected as a feature.

7.2.5 Feature Aggregation across CT Slices

Since all the image processing features are extracted slice by slice, they need to be organized

to represent the state of the entire CT scan and then be comparable among different

patients. One approach to do this is to organize the features by location. This requires

slice alignment/registration among all CT scans. Since the slice thickness between the CT

slices is often large, i.e., over 10 times bigger than the pixel dimension inside the slice, even
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perfect registration of CT slices among patients would bring a relatively large alignment

errors in the order of the slice thickness. Hematoma and edema among patients further

complicate the registration process. Yet another reason that registration may not be

necessary is that the location of injury inside the brain may be different among patients.

All these suggest that the alignment with the injury location, e.g., the comparison of

the texture patterns around the injured regions, may provide a better solution for ICP

prediction.

In order to aggregate of extracted features, a statistical approach is taken with the

assumption that the procedure can reveal the critical information needed for ICP predic-

tion from calculated features. Statistics of features across slices are calculated and used

to represent the features of an entire CT scan. Specifically, min(f), max(f), median(f),

mean(f), std(f) are calculated for a feature f from the midline shift feature set or the

texture feature set. For the blood amount feature, besides the 5 operators listed above,

sum(f) is also added to record the total blood volume.

7.3 Data

7.3.1 Data Preparation

The collected data includes 17 patients with mild to severe TBIs, which were provided by

the Carolinas Healthcare System (CHS). The age ranges from 8 to 70.1, with mean value

38.4 and standard deviation 19.2. Each patient has several CT scans. Some have surgeries

performed between two consecutive CT scans. Therefore, in total, 56 CT scans were used

for this study. With each CT scan, CT slices that show ventricles or regions that should

have contained ventricles were selected for image analysis because these regions contain

the features explained above. Usually 5 slices from each CT scan are selected in this
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process.

7.3.2 ICP Level Labeling and Prediction

For each patient, the ICP value is recorded every hour at any given day. To associate the

ICP value with each CT scan, the two closest measurements of ICP to the time of CT

scan acquisition (both within an hour) are averaged and assigned as the ICP value at the

time of the CT scan. Then the ICP values are grouped into two classes: elevated ICP

with ICP> 15 and normal ICP with ICP≤ 15. With this ICP level thresholding, there are

31 cases of normal and 25 cases of elevated ICP.

7.4 Feature Selection

Overall, 274 features are extracted. Since there are only 56 cases, feature selection is

performed to reduce the feature space and select only the most relevant features to improve

generalization ability. Feature selection methods can be grouped into two categories [43]

[44]. The first category is called a filter that usually considers the relationship between

features and target using some defined conditions, such as correlation, directly. The second

category is called a wrapper which incorporates a classifier and selects features based on

the classification accuracy. The feature selection methods in the first category are much

faster than the methods in the second category, however, methods in the second category

usually produce higher classification accuracy. A common practice to select features from

a large set of candidates is performed in two stages [72]. In the first stage a filter-like

feature selection method is used to rank all features. Then a small number of top ranked

features is selected as the refined candidate sets. In the second stage, a wrapper of feature

selection method is employed to select a feature set with high testing accuracy. In this
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thesis this feature selection scheme is applied. The ReliefF algorithm [81] is applied in the

first stage to select the top 40 features. Since midline shift, blood amount, demographic

information and ISS may provide useful information for ICP prediction in the medical

point of view, these features are also added because some of these features are not in the

top 40 rank list. In total, 52 features are selected for further process.

In the second stage, the Support Vector Machine (SVM) is used in the wrapper for

the classification of feature set. In the validation step, the 10 fold cross-validation result

is used as the accuracy measurement. Radical Basis Function (RBF) kernel is used with

fixed parameters of C = 32768 and γ = 0.125. The search method used to construct

feature set is Best First [43]. Since the midline shift, blood amount and ISS are very

relevant to ICP, these 3 features are set as the initial set of the search set. The feature

subset achieving the best validation accuracy for ICP prediction is selected as the final

feature set. Table 7.1 shows the final selected feature set. All the feature selection and

classification experiments are performed in Weka [30].

Table 7.1: Selected Features

max(midline shift)
max(normalized midline shift)

median(normalized midline shift)
ISS

sum(BloodCount)
One std(FFT feature)

One std(DWCWT feature)
Two min(Wavelet feature)
One mean(Wavelet feature)
One max(Variance feature)
One std(Wavelet feature)

One median(GLRLM feature)
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7.5 Classification Result

After the feature selection step, 10 fold cross validation were performed 10 times with

random split of the data. Table 7.2 shows the mean value as well as standard deviation

of the classification results in percentage. As it can be seen, the classification accuracy is

Table 7.2: Classification Result

Sensitivity Specificity Accuracy
84.83± 3.43 80.40± 6.38 82.86± 4.05

promising in predicting ICP levels. This also verifies the usefulness of selected features for

ICP prediction.

7.6 Conclusion

In this application, an ICP level prediction method is proposed and validated using ma-

chine learning method. Multiple sources of features are used, including automatically

calculated midline shift, texture patterns and blood amount extracted from the brain CT

images. Other features such as age, ISS are also considered. Selecting informative features

from the original feature set provides a promising ICP prediction model is built, which

is validated using machine learning algorithm. Future work may include further investi-

gation of the medical interpretations of the selected features and further evaluation the

method on larger datasets.
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CHAPTER 8 Conclusion and Future Work

8.1 Conclusion

This thesis provides a framework for automated midline shift detection in axial head CT

images. First, an accurate ideal midline detection method is proposed and then CT scan

images are aligned to the ideal midline. The ventricles are then recognized via initial

spatial segmentation followed by template matching using templates extracted from an

axial head MRI scan. Finally, using multiple regions shape matching method the actual

midline is drawn and the horizontal midline shift is calculated. The proposed method

offers the following improvements over existing approaches: accurate detection of ideal

midline, the use of both anatomical features and spatial templates derived from MRI

images to identify ventricles from pathological CT images, and a multiple regions shape

matching algorithm which provides a very robust actual midline drawing method to deal

with diverse ventricle shapes. Moreover, the relatively large size of the CT dataset used

for testing makes the results of this study more reliable. This thesis also provides a

general framework for automated midline shift measurement. Because of the separation

of steps, each part can be designed and improved almost individually, which facilitate the

development of the entire system. Another advantage of the thesis is that the results of

each step can be further improved with the improvement made to the previous steps.

The study also intends to predict ICP based on features extracted from CT images,

including midline shift, texture feature and features from demographical information. The
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prediction results using machine learning method are promising. This also indicates that

the proposed automated midline shift measurement is accurate enough for practical ap-

plication.

8.2 Future Work

In the proposed segmentation, the low level segmentation and high level recognition are

separated and currently there is no feedback from the high level to the low level segmen-

tation. This is different from human visual inspection, which has interactions between low

level vision and high level recognition. One possible approach to combine these together

is “model based low-level segmentation”. In this method, the low-level segmentation may

be guided by high level atlas models of the target structure.

For the actual midline estimation, a imaginary line is estimated to draw the actual

midline. This emulates the approach used when experts draw the midline manually. How-

ever, it is observed that in addition to horizontal shift, there is often twisting in ventricle

regions, i.e., the midline is not always vertical. This requires an additional algorithmic

process to calculate the deformation of the angle of the midline. Other useful information

about the midline shift includes the deformation in the upper part and lower part of the

brain, besides the shift along the ventricles. Future work will therefore include detection

of midline deformation in these regions. This requires other features to be extracted to

estimate the actual midline in the corresponding regions.

Future work will also focus on extraction of other features, such as more details about

the ventricle to predict the ICP value. For instance, the asymmetry of the lateral ventricles

may indicate an unbalanced increase in ICP. Also more data are needed for ICP prediction
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to further verify the proposed model.
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